=(a^2+a+1)(a-1)

Simple and best practice solution for =(a^2+a+1)(a-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for =(a^2+a+1)(a-1) equation:


Simplifying
0 = (a2 + a + 1)(a + -1)

Reorder the terms:
0 = (1 + a + a2)(a + -1)

Reorder the terms:
0 = (1 + a + a2)(-1 + a)

Multiply (1 + a + a2) * (-1 + a)
0 = (1(-1 + a) + a(-1 + a) + a2(-1 + a))
0 = ((-1 * 1 + a * 1) + a(-1 + a) + a2(-1 + a))
0 = ((-1 + 1a) + a(-1 + a) + a2(-1 + a))
0 = (-1 + 1a + (-1 * a + a * a) + a2(-1 + a))
0 = (-1 + 1a + (-1a + a2) + a2(-1 + a))
0 = (-1 + 1a + -1a + a2 + (-1 * a2 + a * a2))
0 = (-1 + 1a + -1a + a2 + (-1a2 + a3))

Combine like terms: 1a + -1a = 0
0 = (-1 + 0 + a2 + -1a2 + a3)
0 = (-1 + a2 + -1a2 + a3)

Combine like terms: a2 + -1a2 = 0
0 = (-1 + 0 + a3)
0 = (-1 + a3)

Solving
0 = -1 + a3

Solving for variable 'a'.

Move all terms containing a to the left, all other terms to the right.

Add '-1a3' to each side of the equation.
0 + -1a3 = -1 + a3 + -1a3
Remove the zero:
-1a3 = -1 + a3 + -1a3

Combine like terms: a3 + -1a3 = 0
-1a3 = -1 + 0
-1a3 = -1

Divide each side by '-1'.
a3 = 1

Simplifying
a3 = 1

Reorder the terms:
-1 + a3 = 1 + -1

Combine like terms: 1 + -1 = 0
-1 + a3 = 0

The solution to this equation could not be determined.

See similar equations:

| 4/9x=48 | | 12h=24 | | 4x^2=5+8x | | -2+2x-16= | | 10x^2y+7xy^2+y^3=0 | | 2x^2=1+8x | | 448(t)=-16t^2+16t+480 | | =(a-11)(a+5) | | 8x-18=-58 | | 9r+4=94 | | 3p^2-9p+1=0 | | 0.6r^2t(10r^3+5rt^3+15t^2)=0 | | (5x^2-3x+1)-(2x^2-4x-6)= | | 8x-18x=-58 | | 448(t)=-16t*-16t+16t+480 | | -23(2)= | | =(3y+7)(4y+5) | | 3/-2+2=5 | | -11(-6)= | | 0=x^2-8x-48 | | 2x(x)=200 | | -12(4)= | | .15-.01(x+1)=-.02(2-x) | | 29=-9+r | | 15(-5)= | | -3(x+4)+15=12 | | 5x-60= | | 3+5x=-3x-53 | | 20=-5/8x | | -16=t-3 | | -12x=96 | | 2+5x=-3x-53 |

Equations solver categories